The Term Structure of Real Estate Leases

Ernesto Aldana ¹ Andrea Chegut ² Jacob S. Sagi ¹

¹Kenan-Flagler Business School, University of North Carolina
²Center for Real Estate, Massachusetts Institute of Technology

August 13, 2020
The Term Structure of Real Estate Leases

Introduction

▶ For several asset classes, forward contracts reflect market perception of future price dynamics.
 ▶ The term structure of oil reflects market expectations about future prices and storage costs
 ▶ The term structure of interest rates has been linked to expectations about future macroeconomic outcomes

▶ However, such tools are unavailable for less transparent markets, like commercial real estate

▶ Research objective: characterize the dynamics of the term structure of the price of commercial space
 ▶ What’s the current price of occupying 1 sf for 1 period at different times in the future?
The Term Structure of Real Estate Leases

Introduction

▶ How to read this graph?
▶ E.g., standing in Jan-2010, for high quality (Class A) properties:
 ▶ Price of 1 month of short-term (immediate) occupancy: $3.9 psf
 ▶ Price of 1 month of medium-term (Jan-2015) occupancy: $4.3 psf
 ▶ Price of 1 month of long-term (Jan-2020) occupancy: $3.7 psf
The Term Structure of Real Estate Leases

Introduction

How to read this graph?

E.g., standing in Jan-2010, for high quality (Class A) properties:

- Price of 1 month of short-term (immediate) occupancy: $3.9 psf
- Price of 1 month of medium-term (Jan-2015) occupancy: $4.3 psf
- Price of 1 month of long-term (Jan-2020) occupancy: $3.7 psf
The Term Structure of Real Estate Leases

Introduction

▶ Where do we get these prices from?
 ▶ The collection of **newly executed leases** at any given time represents the market's assessment of current and anticipated price of space
A lease contract is a commitment to exchange the rights of space occupancy for cash at certain dates in the future.

- Essentially, a bundle of forward contracts on space.

- Rental prices (net of TI, concessions) ≈ average of forward lease rates.
A lease contract is a commitment to exchange the rights of space occupancy for cash at certain dates in the future. Essentially, a bundle of forward contracts on space. Rental prices (net of TI, concessions) ≈ average of forward lease rates.

What’s a forward lease rate?
- Commit to occupy space \(\tau \) years from now for one period.
- Forward lease rate = today’s “fair market” value of this commitment.
Introduction
Forward lease rates

▶ Lease = commitment to occupy and pay for space
 ▶ Over multiple periods

▶ What’s in a lease?

Actual 5-year gross lease payments
Includes: TI, concessions, escalations

![Bar chart showing lease rates over five years.](image-url)
Introduction
Forward lease rates

- Lease = commitment to occupy and pay for space
 - Over multiple periods

- What’s in a lease?

Actual 5-year gross lease payments
Includes: TI, concessions, escalations

Unbundled version of same space commitment

These should be equivalent (in present value terms)
Data

- Data on NYC gross leases on office properties from CompStak
 - Executed between 2005.2 and 2016.2
 - Rent schedule (including rent bumps)
 - Concessions: free rent, TIs
 - Commencement date, lease term

- Two quality classes
 - Class A: 2,595 leases
 - Class B: 789 leases
Data

Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>1%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lease term (years)</td>
<td>8.95</td>
<td>3.80</td>
<td>2.00</td>
<td>5.25</td>
<td>10.00</td>
<td>10.50</td>
<td>20.00</td>
</tr>
<tr>
<td>Time to commencement (months)</td>
<td>2.49</td>
<td>5.29</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>3.00</td>
<td>28.00</td>
</tr>
<tr>
<td>Time to expiration (years)</td>
<td>9.16</td>
<td>3.87</td>
<td>2.00</td>
<td>5.42</td>
<td>10.00</td>
<td>10.75</td>
<td>20.28</td>
</tr>
<tr>
<td>Starting rent (USD)</td>
<td>5.54</td>
<td>1.96</td>
<td>2.58</td>
<td>4.08</td>
<td>5.17</td>
<td>6.62</td>
<td>11.20</td>
</tr>
<tr>
<td>Average rent (USD)</td>
<td>5.21</td>
<td>1.95</td>
<td>2.41</td>
<td>3.76</td>
<td>4.77</td>
<td>6.20</td>
<td>10.94</td>
</tr>
<tr>
<td>Average rent increase (USD per yr)</td>
<td>0.04</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.05</td>
<td>0.14</td>
</tr>
<tr>
<td>Number of rent bumps</td>
<td>0.93</td>
<td>0.78</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Average bump duration (months)</td>
<td>54.40</td>
<td>16.95</td>
<td>13.64</td>
<td>46.00</td>
<td>57.00</td>
<td>60.00</td>
<td>120.00</td>
</tr>
<tr>
<td>Tenant improvements (USD)</td>
<td>31.15</td>
<td>29.27</td>
<td>0.00</td>
<td>0.00</td>
<td>27.00</td>
<td>55.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Free rent (months)</td>
<td>5.04</td>
<td>4.05</td>
<td>0.00</td>
<td>2.00</td>
<td>4.00</td>
<td>7.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Class B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lease term (years)</td>
<td>8.86</td>
<td>4.02</td>
<td>1.08</td>
<td>5.00</td>
<td>10.00</td>
<td>10.50</td>
<td>20.60</td>
</tr>
<tr>
<td>Time to commencement (months)</td>
<td>1.97</td>
<td>3.71</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>3.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Time to expiration (years)</td>
<td>9.02</td>
<td>4.05</td>
<td>1.42</td>
<td>5.33</td>
<td>10.00</td>
<td>10.58</td>
<td>20.72</td>
</tr>
<tr>
<td>Starting rent (USD)</td>
<td>3.53</td>
<td>0.91</td>
<td>2.00</td>
<td>2.83</td>
<td>3.33</td>
<td>4.08</td>
<td>6.04</td>
</tr>
<tr>
<td>Average rent (USD)</td>
<td>3.31</td>
<td>0.87</td>
<td>1.91</td>
<td>2.62</td>
<td>3.18</td>
<td>3.88</td>
<td>5.59</td>
</tr>
<tr>
<td>Average rent increase (USD per yr)</td>
<td>0.02</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>Number of rent bumps</td>
<td>0.91</td>
<td>0.89</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Average bump duration (months)</td>
<td>56.99</td>
<td>24.61</td>
<td>11.55</td>
<td>48.00</td>
<td>58.00</td>
<td>60.00</td>
<td>126.24</td>
</tr>
<tr>
<td>Tenant improvements (USD)</td>
<td>23.01</td>
<td>23.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17.75</td>
<td>40.00</td>
<td>75.00</td>
</tr>
<tr>
<td>Free rent (months)</td>
<td>4.62</td>
<td>3.52</td>
<td>0.00</td>
<td>2.00</td>
<td>4.00</td>
<td>6.00</td>
<td>14.00</td>
</tr>
</tbody>
</table>
Estimation of the term structure

Key assumption

\[
\text{PV of contract CF} = \text{PV of contract occupancy}
\]

\[
\text{Sum of discounted cash flows} = \text{Sum of discounted forward lease rates}
\]
Estimation of the term structure

Key assumption

\[
\text{PV of contract CF} = \text{PV of contract occupancy}
\]

Sum of discounted cash flows

Sum of discounted forward lease rates

▶ A lease is a **bundle of forward contracts** on space
 ▶ Example: 3 different leases executed today
 ▶ What’s in each bundle?

\[
F_1, F_2, \ldots, F_{120} \\
F_1, F_2, \ldots, F_{60} \\
F_{13}, F_{14}, \ldots, F_{72}
\]
Estimation of the term structure
Unbundling contract occupancy

► We assume all forward prices can be derived from a small set of key rates:
 ► Short term: $F_{t,0}$ (Spot)
 ► Medium term: $F_{t,60}$ (5yr forward)
 ► Long term: $F_{t,120}$ (10yr forward)

► Sum of forward lease rates becomes a weighted sum of the key rates
Estimation of the term structure

Unbundling contract occupancy

We assume all forward prices can be derived from a small set of key rates:

- Short term: \(F_{t,0} \) (Spot)
- Medium term: \(F_{t,60} \) (5yr forward)
- Long term: \(F_{t,120} \) (10yr forward)

Sum of forward lease rates becomes a weighted sum of the key rates

\[
\text{PV of contract CF} = w_{t,0}iF_{t,0} + w_{t,60}iF_{t,60} + w_{t,120}iF_{t,120}
\]
Estimation of the term structure

Results: OLS

- Noisy estimates, N varies from quarter to quarter
- Fails to capture time-series dynamics (autocorrelation)
Estimation of the term structure
State-space model

- We impose an autoregressive structure in key rates by specifying a linear state-space model
 - State equation
 \[F_{t+1} = \bar{F} + \rho F_t + \epsilon_{t+1} \]
 - The observation equations are given by our present value equivalence
 - We use the Kalman Filter to back out the term structure
 - Unknown parameters are estimated via MLE
Estimation of the term structure

Results: State-space model
Estimation of the term structure

Key measures: Slope and curvature

- The **slope** is related to the spread between short and long terms
- The **curvature** captures the behavior of the medium term
Estimation of the term structure

Results: Shape of the term structure

Class A

Slope

Curvature
Estimation of the term structure

Results: Shape of the term structure

Class A
Slope

Class B
Slope

Curvature

Curvature
Application: co-working strategy

- Consider the following investment strategy at date t:
 - Short position in a long-term lease (10 years)
 - Long position in a sequence of short-term leases (one quarter)

- This looks essentially like a co-working company...
Application: co-working strategy

- Consider the following investment strategy at date t:
 - Short position in a long-term lease (10 years)
 - Long position in a sequence of short-term leases (one quarter)

- This looks essentially like a co-working company... with some important differences
 1. Intensified use of space
 2. Services provided (utilities, equipment, staff)
Application: co-working strategy

- Consider the following investment strategy at date t:
 - Short position in a long-term lease (10 years)
 - Long position in a sequence of short-term leases (one quarter)

- This looks essentially like a co-working company... with some important differences
 1. Intensified use of space
 2. Services provided (utilities, equipment, staff)

- We can use the properties of the state-space model to obtain the distribution of expected cash flows for this strategy

- Is this profitable? When?
Application: co-working strategy

Profitability

- Is this ever profitable?
 - We compute the Sharpe ratio of the strategy in every quarter
 - Ratio of annualized expected profit to standard deviation
 - Typical SR of diversified portfolio ≈ 0.5

Class A
Application: co-working strategy

Profitability

- Is this ever profitable?
 - We compute the Sharpe ratio of the strategy in every quarter
 - Ratio of annualized expected profit to standard deviation
 - Typical SR of diversified portfolio ≈ 0.5

Class A

![Graph showing Sharpe ratio for Class A with different scenarios over the years.]

Class B

![Graph showing Sharpe ratio for Class B with different scenarios over the years.]

COVID-19

- Lease transaction information slowly *trickles* into the CompStak records
 - We do not observe the full set of transactions after February

<table>
<thead>
<tr>
<th>Quarter</th>
<th>F0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter</th>
<th>F10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Price of space responds sluggishly (*trickles*). Short-term has the slowest reaction.

From application: co-working more exposed to shocks than regular offices (Similar to hotels).
COVID-19

- Lease transaction information slowly *trickles* into the CompStak records
 - We do not observe the full set of transactions after February

- However, there are some insights we can provide,
 - Price of space responds sluggishly to shocks (short term has slowest reaction)

```
+-----------------+-----------------+-----------------+
| Quarter | F0 | F5 | F10 |
+-----------------+-----------------+-----------------+
| 0      | 4.4 | 5.0 | 6.0 |
| 5      | 4.4 | 5.0 | 6.0 |
| 10     | 4.4 | 5.0 | 6.0 |
| 15     | 4.4 | 5.0 | 6.0 |
| 20     | 4.4 | 5.0 | 6.0 |
| 25     | 4.4 | 5.0 | 6.0 |
| 30     | 4.4 | 5.0 | 6.0 |
| 35     | 4.4 | 5.0 | 6.0 |
| 40     | 4.4 | 5.0 | 6.0 |
| 45     | 4.4 | 5.0 | 6.0 |
```

- From application: co-working more exposed to shocks than regular offices (Similar to hotels)
COVID-19

- Lease transaction information slowly *trickles* into the CompStak records
 - We do not observe the full set of transactions after February

- However, there are some insights we can provide,
 - Price of space responds sluggishly to shocks (short term has slowest reaction)

- From application: co-working more exposed to shocks than regular offices (Similar to hotels)
Conclusion

- We estimate a state-space model to study the dynamics of the term structure of CRE leases.

- Term structure has, generally, a positive slope and negative curvature: \(\cap \)-shape.

- Results are roughly consistent across quality classes.

- Leasing market takes several quarters to fully price unexpected shocks.

- The long-short (co-working) strategy described is generally unprofitable from a real estate perspective.