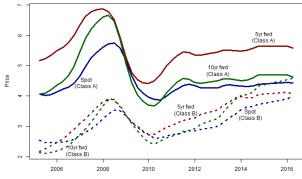
Ernesto Aldana¹ Andrea Chegut² Jacob S. Sagi¹

¹Kenan-Flagler Business School, University of North Carolina

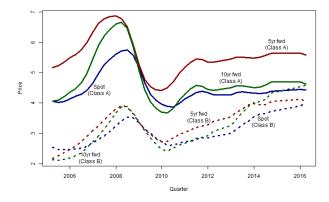
²Center for Real Estate, Massachusetts Institute of Technology

August 13, 2020


UNC KENAN-FLAGLER BUSINESS SCHOOL

Introduction

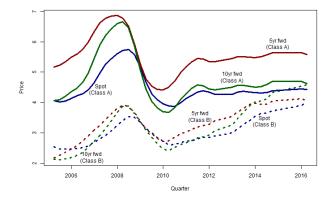
- For several asset classes, forward contracts reflect market perception of future price dynamics.
 - The term structure of oil reflects market expectations about future prices and storage costs
 - The term structure of interest rates has been linked to expectations about future macroeconomic outcomes
- However, such tools are unavailable for less transparent markets, like commercial real estate
- Research objective: characterize the dynamics of the term structure of the price of commercial space
 - What's the *current* price of occupying 1 sf for 1 period at different times in the future?


Introduction

Quarter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction



How to read this graph?

- E.g., standing in Jan-2010, for high quality (Class A) properties:
 - Price of 1 month of short-term (immediate) occupancy: \$3.9 psf
 - Price of 1 month of medium-term (Jan-2015) occupancy: \$4.3 psf

Price of 1 month of long-term (Jan-2020) occupancy: \$3.7 psf

Introduction

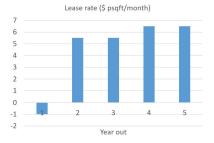
- Where do we get these prices from?
 - The collection of newly executed leases at any given time represents the market's assessment of current and anticipated price of space

- A lease contract is a commitment to exchange the rights of space occupancy for cash at certain dates in the future
 - Essentially, a bundle of forward contracts on space
 - ▶ Rental prices (net of TI, concessions) ≈ average of forward lease rates

- A lease contract is a commitment to exchange the rights of space occupancy for cash at certain dates in the future
 - Essentially, a bundle of forward contracts on space
 - ▶ Rental prices (net of TI, concessions) ≈ average of forward lease rates

- What's a forward lease rate?
 - Commit to occupy space τ years from now for one period
 - Forward lease rate = today's "fair market" value of this commitment

Introduction

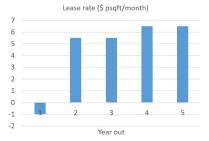

Forward lease rates

Lease = commitment to occupy and pay for space

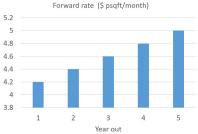
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Over multiple periods
- What's in a lease?

Actual 5-year gross lease payments Includes: TI, concessions, escalations


Introduction

Forward lease rates


Lease = commitment to occupy and pay for space

- Over multiple periods
- What's in a lease?

Actual 5-year gross lease payments Includes: TI, concessions, escalations

Unbundled version of same space commitment

These should be equivalent (in present value terms)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Data

- Data on NYC gross leases on office properties from CompStak
 - Executed between 2005.2 and 2016.2
 - Rent schedule (including rent bumps)
 - Concessions: free rent, TIs
 - Commencement date, lease term

Two quality classes

- Class A: 2,595 leases
- Class B: 789 leases

Data Summary statistics

	Mean	S.D.	1%	25%	50%	75%	99%
	С	lass A					
Lease term (years)	8.95	3.80	2.00	5.25	10.00	10.50	20.00
Time to commencement (months)	2.49	5.29	0.00	0.00	1.00	3.00	28.00
Time to expiration (years)	9.16	3.87	2.00	5.42	10.00	10.75	20.28
Starting rent (USD)	5.54	1.96	2.58	4.08	5.17	6.62	11.20
Average rent (USD)	5.21	1.95	2.41	3.76	4.77	6.20	10.94
Average rent increase (USD per yr)	0.04	0.05	0.00	0.00	0.04	0.05	0.14
Number of rent bumps	0.93	0.78	0.00	0.00	1.00	1.00	3.00
Average bump duration (months)	54.40	16.95	13.64	46.00	57.00	60.00	120.00
Tenant improvements (USD)	31.15	29.27	0.00	0.00	27.00	55.00	100.00
Free rent (months)	5.04	4.05	0.00	2.00	4.00	7.00	15.00
	С	lass B					
Lease term (years)	8.86	4.02	1.08	5.00	10.00	10.50	20.60
Time to commencement (months)	1.97	3.71	0.00	0.00	1.00	3.00	12.00
Time to expiration (years)	9.02	4.05	1.42	5.33	10.00	10.58	20.72
Starting rent (USD)	3.53	0.91	2.00	2.83	3.33	4.08	6.04
Average rent (USD)	3.31	0.87	1.91	2.62	3.18	3.88	5.59
Average rent increase (USD per yr)	0.02	0.03	0.00	0.00	0.02	0.04	0.10
Number of rent bumps	0.91	0.89	0.00	0.00	1.00	1.00	4.00
Average bump duration (months)	56.99	24.61	11.55	48.00	58.00	60.00	126.24
Tenant improvements (USD)	23.01	23.08	0.00	0.00	17.75	40.00	75.00
Free rent (months)	4.62	3.52	0.00	2.00	4.00	6.00	14.00

=

Key assumption

PV of contract CF

Sum of discounted cash flows

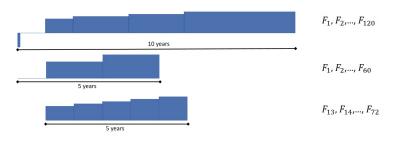
PV of contract occupancy

Sum of discounted forward lease rates

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Key assumption

PV of contract **CF**


Sum of discounted cash flows

PV of contract occupancy

Sum of discounted forward lease rates

A lease is a **bundle of forward contracts** on space

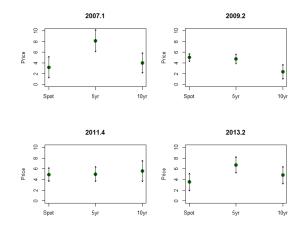
- Example: 3 different leases executed today
- What's in each bundle?

_

Unbundling contract occupancy

- We assume all forward prices can be derived from a small set of key rates:
 - ► Short term: **F**_{t,0} (Spot)
 - Medium term: F_{t,60} (5yr forward)
 - Long term: F_{t,120} (10yr forward)

Sum of forward lease rates becomes a weighted sum of the key rates


Unbundling contract occupancy

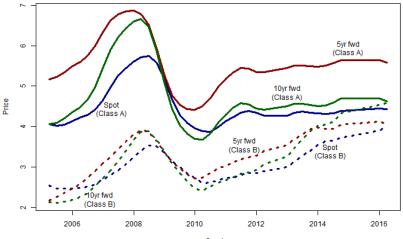
- We assume all forward prices can be derived from a small set of key rates:
 - Short term: F_{t,0} (Spot)
 - Medium term: F_{t,60} (5yr forward)
 - Long term: F_{t,120} (10yr forward)
- Sum of forward lease rates becomes a weighted sum of the key rates

PV of contract CF = $w_{t,0,i}\mathbf{F}_{t,0} + w_{t,60,i}\mathbf{F}_{t,60} + w_{t,120,i}\mathbf{F}_{t,120}$

- ロ ト - 4 回 ト - 4 □ - 4

Estimation of the term structure Results: OLS

- Noisy estimates, N varies from quarter to quarter
- Fails to capture time-series dynamics (autocorrelation)


State-space model

- We impose an autoregressive structure in key rates by specifying a linear state-space model
 - State equation

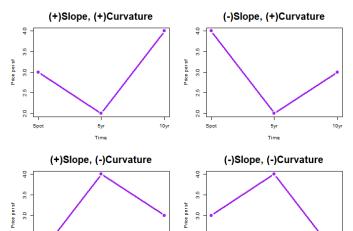
$$F_{t+1} = \bar{F} + \rho F_t + \epsilon_{t+1}$$

- The observation equations are given by our present value equivalence
- We use the Kalman Filter to back out the term structure
- Unknown parameters are estimated via MLE

Results: State-space model

Quarter

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆


Key measures: Slope and curvature

0

Spot

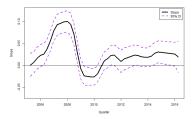
5yr

- > The **slope** is related to the spread between short and long terms
- > The curvature captures the behavior of the medium term

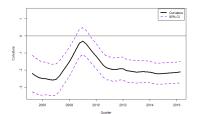
50

Spot

5yr


10yr

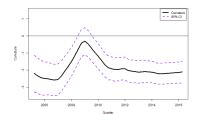
10yr


Results: Shape of the term structure

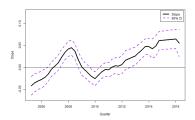
Class A

Slope

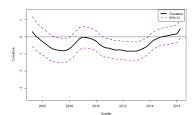
Curvature


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Class A


Slope

Results: Shape of the term structure


Curvature

Curvature

Application: co-working strategy

- Consider the following investment strategy at date t:
 - Short position in a long-term lease (10 years)
 - Long position in a sequence of short-term leases (one quarter)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This looks essentially like a co-working company...

Application: co-working strategy

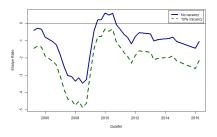
- Consider the following investment strategy at date t:
 - Short position in a long-term lease (10 years)
 - Long position in a sequence of short-term leases (one quarter)

- This looks essentially like a co-working company... with some important differences
 - 1. Intensified use of space
 - 2. Services provided (utilities, equipment, staff)

Application: co-working strategy

- Consider the following investment strategy at date t:
 - Short position in a long-term lease (10 years)
 - Long position in a sequence of short-term leases (one quarter)
- This looks essentially like a co-working company... with some important differences
 - 1. Intensified use of space
 - 2. Services provided (utilities, equipment, staff)
- We can use the properties of the state-space model to obtain the distribution of expected cash flows for this strategy

Application: co-working strategy Profitability

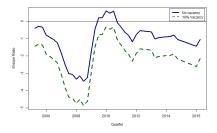

Is this ever profitable?

- We compute the Sharpe ratio of the strategy in every quarter
 - Ratio of annualized expected profit to standard deviation

(日) (四) (日) (日) (日)

• Typical SR of diversified portfolio ≈ 0.5

Class A


Application: co-working strategy Profitability

Is this ever profitable?

- We compute the Sharpe ratio of the strategy in every quarter
 - Ratio of annualized expected profit to standard deviation
 - Typical SR of diversified portfolio ≈ 0.5

Class A

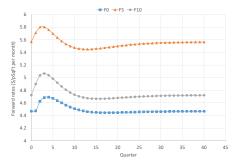
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

COVID-19

Lease transaction information slowly *trickles* into the CompStak records

• We do not observe the full set of transactions after February

COVID-19

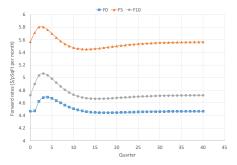

Lease transaction information slowly *trickles* into the CompStak records

We do not observe the full set of transactions after February

- However, there are some insights we can provide,
 - Price of space responds sluggishly to shocks (short term has slowest reaction)

イロト 不得 トイヨト イヨト

э



COVID-19

Lease transaction information slowly *trickles* into the CompStak records

We do not observe the full set of transactions after February

- However, there are some insights we can provide,
 - Price of space responds sluggishly to shocks (short term has slowest reaction)

 From application: co-working more exposed to shocks than regular offices (Similar to hotels)

Conclusion

- We estimate a state-space model to study the dynamics of the term structure of CRE leases
- ► Term structure has, generally, a positive slope and negative curvature: ∩-shape
- Results are roughly consistent across quality classes
- Leasing market takes several quarters to fully price unexpected shocks
- The long-short (co-working) strategy described is generally unprofitable from a real estate perspective